API Reference
xmatch functionality
- spherimatch.xmatch(catalog1, catalog2, tolerance, verbose=False) XMatchResult [source]
Performs a cross-match between two catalogs.
This function matches objects from two different catalogs based on their coordinates. Objects from catalog1 and catalog2 that are within a specified angular distance (tolerance) are considered matches.
- Parameters:
catalog1 (array-like) – The first catalog.
catalog2 (array-like) – The second catalog.
tolerance (float) – The tolerance for the cross-match in degrees.
verbose (bool, optional) – Whether to print the progress.
- Returns:
A XMatchResult object that contains the cross-match result.
- Return type:
- class spherimatch.XMatchResult(cat1: Catalog, cat2: Catalog, tolerance, result_dict: defaultdict)[source]
- get_dataframe1(min_match=0, coord_columns=['Ra', 'Dec'], retain_all_columns=True, retain_columns=None) DataFrame [source]
Get the first catalog with the number of matches as a pandas dataframe.
- Parameters:
min_match (int, optional) – The minimum number of matches for an object to be included in the dataframe. Default is 0.
coord_columns (list[str], optional) – The names of the columns for the coordinates. Default is [‘Ra’, ‘Dec’].
retain_all_columns (bool, optional) – Whether to retain all the columns in the input (dataframe). Default is True.
retain_columns (list[str], optional) – The names of the columns to retain in the output dataframe. Will override retain_all_columns if not empty. Default is None.
- Returns:
The dataframe of the first catalog with the number of matches.
- Return type:
pandas.DataFrame
- get_dataframe2(min_match=0, coord_columns=['Ra', 'Dec'], retain_all_columns=True, retain_columns=None) DataFrame [source]
Get the second catalog with the number of matches as a pandas dataframe.
Please refer to the get_dataframe1() and replace the ‘first catalog’ with the ‘second catalog’.
- get_serial_dataframe(min_match=1, reverse=False, coord_columns=['Ra', 'Dec'], retain_all_columns=True, retain_columns=None) DataFrame [source]
Get a pandas dataframe with the information of the matching of the two catalogs in a serial manner.
Each object from the first catalog with sufficient matches (as defined by min_match) appear first, followed by their matched objects from the second catalog.
- Parameters:
min_match (int, optional) – The minimum number of matches for an object from the first catalog to be included in the dataframe. Default is 1.
reverse (bool, optional) – Whether to reverse the order of catalogs (i.e., make the second catalog as the first and vice versa). Default is False.
coord_columns (list[str], optional) – The names of the columns for the coordinates. Default is [‘Ra’, ‘Dec’].
retain_all_columns (bool, optional) – Whether to retain all the columns in the input (dataframe). Default is True.
retain_columns (list[str], optional) – The names of the columns to retain in the output dataframe. Will override retain_all_columns if not empty. Default is None.
- Returns:
The serial dataframe of the two catalogs with the number of matches.
- Return type:
pandas.DataFrame
fof functionality
- spherimatch.fof(catalog, tolerance) FoFResult [source]
Perform the Friends-of-Friends (FoF) grouping algorithm on a catalog.
This function applies the FoF algorithm to a given catalog. The algorithm works by linking objects that are within a specified angular distance (tolerance) of each other, forming groups or clusters of objects.
- Parameters:
catalog (array-like) – The catalog to group.
tolerance (float) – The tolerance for the grouping in degrees.
- Returns:
The result of the Friends-of-Friends grouping.
- Return type:
- class spherimatch.FoFResult(catalog: Catalog, tolerance: float, result_list: list)[source]
- get_coordinates() list[list[tuple]] [source]
Returns the coordinates of objects grouped as lists of tuples.
- Returns:
A list of lists of tuples of coordinates of objects in each group.
- Return type:
list[list[tuple]]
- get_group_coordinates() list[tuple] [source]
Returns the center coordinates of the groups.
- Returns:
A list of tuples of coordinates of the center of each group.
- Return type:
list[tuple]
- get_group_dataframe(min_group_size=1, coord_columns=['Ra', 'Dec'], retain_all_columns=True, retain_columns=None) DataFrame [source]
Get the grouped data as a two-level indexed pandas DataFrame.
- Parameters:
min_group_size (int, optional) – The minimum group size to include in the DataFrame. Default is 1.
coord_columns (list[str], optional) – The names of the columns for the coordinates. Default is [‘Ra’, ‘Dec’].
retain_all_columns (bool, optional) – Whether to retain all the columns in the input (dataframe). Default is True.
retain_columns (list[str], optional) – The names of the columns to retain in the output dataframe. Will override retain_all_columns if not empty. Default is None.
- Returns:
A two-level indexed pandas DataFrame containing the grouped data.
- Return type:
pandas.DataFrame